
Prediction of Biological Targets Using Probabilistic Neural Networks and
Atom-Type Descriptors

Tomoko Niwa†

Discovery Research Laboratories, Nippon Shinyaku Co., Ltd. 14,
Nishinosho-Monguchi-cho, Kisshoin, Minami-ku, Kyoto, 601-8550, Japan

Received June 9, 2003

Prediction of biological targets for molecules from their chemical structures is beneficial for
generating focused libraries, selecting compounds for screening, and annotating biological
activities for those compounds whose activities are unknown. We studied the ability of a
probabilistic neural network (PNN), a variant of normalized radial basis function (RBF) neural
networks, to predict biological activities for a set of 799 compounds having activities against
seven biological targets. The compounds were taken from the MDDR database, and they were
carefully selected to comprise distinct biological activities and diverse structures. The structural
characteristics of compounds were represented by a set of 24 atom-type descriptors defined by
2D topological chemical structures. The modeling was done in two ways: (1) compounds having
one certain activity were discriminated from those not having that activity and (2) all compounds
were classified into seven biological classes. In both cases, around 90% of the compounds were
correctly classified. Further validation of the modeled PNNs was done with 26 317 compounds
having biological activities against various targets except for the seven targets used for
modeling, and 67-98% compounds were correctly classified depending upon the targets. A
PNN trains much more quickly than widely used neural networks such as a feed-forward neural
network with error back-propagation. Calculation of atom-type descriptors is easy even for a
large-size chemical library. Combination of PNN and atom-type descriptors thus provides a
powerful way to predict biological activities from structural information.

Introduction

With the increasing use of robotics technologies such
as high-throughput screening (HTS) and parallel syn-
thesis, we are now suffering from overflowing data;
efficient methods to deal with so much information are
strongly demanded. Clustering1 and partitioning of
databases2 were widely used in generating libraries and
selecting screening compounds for a particular target.
Artificial intelligence (AI) tools as neural networks are
also suitable for analyzing a huge amount of complicated
data. For example, to evaluate druglikeness of com-
pounds, Ajay and co-workers employed Bayesian neural
networks3 and Sadowski and co-workers used feed-
forward neural networks with error back-propagation.4

One problem in neural network modeling based on
chemical information is that there are so many kinds
of molecular descriptors. Also, the choice of appropriate
descriptors is often time-consuming. In addition, smaller
numbers of descriptors are preferable because the size
of input data largely determines the time needed to
model neural networks. We have already found that
“atom-type” descriptors assigned by elements, struc-
tures, and functional groups work well to characterize
molecular properties. For example, only 24 atom-type
descriptors could successfully discriminate druglike
molecules from nondruglike molecules.5 These descrip-
tors were also successfully utilized in modeling 1-oc-
tanol/water partition coefficients (log P), blood-brain

barrier partition coefficients (log BB), the highest oc-
cupied molecular orbital (HOMO), the lowest unoc-
cupied molecular orbital (LUMO) energy levels, and
polar surface area (PSA).5 They well represented steric,
electronic, and hydrophobic effects of molecules. It is
thus of interest to examine the performance of these
atom-type descriptors in the classification of molecules
according to the biological activities.

Apart from the selection of descriptors, problems in
neural network modeling include the selection of ap-
propriate architectures of neural networks. We have
already found that probabilistic neural networks (PNNs)
were powerful in predicting the intestinal absorption
of drugs6 and in classifying compounds according to
their druglikeness.5 PNN is Donald Specht’s term for
kernel discriminant analysis7 and a variant of normal-
ized radial basis function (RBF) networks.8 They per-
form well in noisy environments and train much more
quickly than feed-forward and Bayesian neural net-
works. Because PNN is a classifier, it can be applicable
to multicategory problems. This means that only one
PNN is sufficient to model a combined set of compounds
against various biological targets. The objectives of this
study are to investigate the performance of the atom-
type descriptors and PNNs to classify compounds ac-
cording to their biological activities. These approaches
are, of course, useful for generating specialized libraries,
selecting compounds for HTS screening, and annotating
biological activity for those compounds whose activities
are unknown.
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Method

Test Compounds. The compounds used for analysis were
taken from MDL Drug Data Report (MDDR 2000.2)9 contain-
ing 118 309 compounds. MDDR covers the patent, literature,
journals, meetings, and congresses. For each patent or litera-
ture in this database, one representative compound has
biological descriptions in the activity field whereas the rest of
compounds have nothing in this field. To exclude compounds
with similar structures, we first selected 27 116 compounds
having biological descriptions in the activity field and valid
chemical structures. From these 27 116 compounds, 799
compounds were then selected for modeling. The activity
classes and the expression of biological activities used for
selection are shown in Table 1. All compounds thus retrieved
were employed in the neural network modeling. They were
similar to those used by Xue and co-workers10,11 to study
informative fingerprints representing the structural properties
of molecules with distinct biological activities and diverse
structures. Among the 27 116 compounds, 799 compounds
were used for modeling and the remainder of 26 317 com-
pounds was used for validation.

Availability of Informtion on the Test Compounds.
The names of the compounds (extreg) are available from the
author.

Descriptors. There are two ways to prepare descriptors.
The first is to calculate a large number of descriptors and then
select meaningful descriptors, and the second is to identify a
preferred set of molecular descriptors directed not for a
particular case but for universal cases. Our selection was the
latter, and we defined 24 descriptors based on the following
considerations. (1) Global descriptors such as log P and mo-
lecular weight were avoided because they are so rough for
discriminating compounds based on biological activities. (2)
Particular descriptors were also avoided because compounds
belonging to one biological class have structural diversities to
some extent. (3) For atoms that rarely appear, such as
phosphorus, detailed assignment was avoided, since sparse
descriptors do not generally work well in neural network
modeling. (4) The atoms in biologically important functional
groups, such as amide and caroboxyl groups, were defined in
detail.

The descriptors we defined are listed in Table 2. For
hydrogen, halogen, and phosphorus atoms, only one type of
descriptor was assigned. For carbon, nitrogen, oxygen, and
sulfur atoms, their descriptors were defined by using hybrid-
ization types (sp, sp2, and sp3) and structural information. For
example, C[aromatic] and N[aromatic] are defined for the

carbon and nitrogen atoms in aromatic rings, respectively.
N[amide] represents the nitrogen atom in an amide group.
N[sp3 planar] is the sp3 nitrogen in a planar structure such as
the nitrogen atom in an indole moiety. N[ammonium] is an
ammonium nitrogen atom. O[carboxyl] represents an oxygen
atom in a carboxyl group. S[SO] and S[SO2] stand for the sulfur
atoms in the functional groups SO and SO2, respectively. For
the carbon, nitrogen, and sulfur atoms not defined above, the
hybridization types (sp, sp2, and sp3) were used for definitions.
C[sp], C[sp2], and C[sp3] represent sp, sp2, and sp3 carbons,
respectively. Similarly, O[sp2], O[sp3], S[sp2], and S[sp3] were
defined for oxygen and sulfur atoms. Note that we used the
occurrence of each descriptor. Therefore, our descriptors can
be regarded as extended molecular formulas. These “atom-
type” descriptors were computed with in-house programs. We
used all 24 descriptors in every model.

PNN Modeling. Probabilistic neural network is Donald
Specht’s term for kernel discriminant analysis and is regarded
as a normalized RBF network.7 PNN has been used to analyze
biological, spectral, and analytical data.6,12,13 The details of
PNN have been described elsewhere.6,13 Briefly, PNN is a
memory-based feed-forward network, consisting of four lay-
ers: input, hidden, summation, and output layers. PNN
replaces the sigmoid activation function often used in neural
networks with a radial basis function, and probability density
functions are evaluated using the Parzen’s nonparametric
estimator.9

PNN utilizes one probability density function for each
category, as shown by

where fA(x) represents the probability density function for
category θA with a vector random variable x, m is the number
of training patterns, p is the number of independent features
(descriptors), and xAi is ith training pattern from category θA.
σ is the width of the Gaussian-shaped kernels. fB(x) is similarly
defined by eq 1 for category θB and so on.

Figure 1 illustrates the architecture of a PNN having four
layers. For simplicity, PNN with two categories is shown. The
input units are merely distribution units that supply the same
input values to all of the hidden units. The number of input
units is equal to the number of descriptors. There is one hidden
unit for each training pattern, and the number of hidden units
is equal to the number of compounds in the training set. The

Table 1. Biological Activities and the Number of Compounds
Used in the Analysis

biological activitiesa no. of compdsb

histamine H3 antagonist 31 (3.9%)
carbonic anhydrase inhibitor 54 (6.8%)
HIV-1 protease inhibitor 216 (27.0%)
5-HT2A antagonist 120 (15.0%)
tyrosine-specific protein kinase inhibitor 200 (25.0%)
ACE inhibitor 140 (17.5%)
progesterone antagonist 38 (4.8%)
a The same expressions as those used in the MDDR database

2000.2 (22,11) are shown. b The figures in parentheses are the
percentage values.

Table 2. Atom-Type Descriptors Used in the Analysis

hydrogen H
carbon C[sp], C[sp2], C[sp3], C[aromatic]
nitrogen N[sp], N[sp2], N[sp3], N[aromatic],

N[amide], N[sp3 planar], N[ammonium]
oxygen O[sp2], O[sp3], O[carboxyl]
sulfur S[sp2], S[sp3], S[SO], S[SO2]
phosphorus P
halogens F, Cl, Br, I

Figure 1. Architecture of PNN.

fA(x) )
1

m(2π)p/2σ p ∑
i)1

m
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(x - xAi)

T(x - xAi)
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number of summation units is the number of the categories.
The hidden-to-output weights are usually 1 or 0; for each
hidden unit, a weight of 1 is used for the connection going to
the output to which that pattern belongs, while all other
connections are given weights of 0. The network produces
activations in the output layer corresponding to the probability
density function estimate. The highest output represents the
most probable category. A probability density function is
defined for each category and is composed of Gaussian shaped
kernels, as shown by eq 1. Since the numbers of input, hidden,
summation, and output units do not change during model
developments, the only weights to be learned are the widths
of the Gaussian shaped kernels, σ. These widths are called
“smoothing factors” or “bandwidths”.7,8 In this study, only one
smoothing factor is applied to all the input descriptors. This
means that all of the input descriptors have the same impact
on predicting the output.

From 799 compounds, a training set (60%), a test set (20%),
and a prediction set (20%) were selected randomly. A PNN
was trained on the training data set. To prevent the PNN from
overfitting the training data, the PNN was evaluated on its
ability to make correct predictions of the test data set. The
best smoothing factor was iteratively optimized, and an upper
limit used to test a smoothing factor was set at 0.8. Thus, a
smoothing factor varies from 0 to 0.8. The external prediction
set was used to study the predictive power of the trained PNN.
PNN modeling was done with the Neuroshell 2 program14 run
on a Pentium II desktop computer.

Results
Classification into Two Categories. First, we

studied whether PNNs could discriminate between
compounds having a certain biological activity from
those not having that activity by dividing the data set
comprising 799 compounds into two categories. For
example, in the case of H3 antagonists, one category
consisted of all H3 antagonists (38 compounds) whereas
the other included the rest of the compounds (761
compounds). The training (60%), test (20%), and predic-
tion (20%) sets are randomly selected five times, and
the average values of five runs are summarized in Table
3. The differences among the five runs were generally
small. Modeling a PNN was easy, and it took less than
1 min to obtain a PNN. After training of a PNN, its
classification ability was checked by calculating the
percentage of the compounds correctly classified. As can
be seen in Table 3, about 93% of the H3 antagonists in
the training set were correctly classified and about 98%
of the rest of the compounds were predicted not to have
H3 antagonist activity. More than 90% of the com-
pounds were successfully classified not only for the test
set but also for the prediction set. Similar results were
obtained for the other biological targets. The predictive
abilities of the trained PNNs proved to be remarkably
high.

The smoothing factors in Table 3 varied from 0.265
to 0.461. Except for tyrosine kinase inhibitors, there are
tendencies that when the number of compounds com-
prising a category was large, the smoothing factor for
that category was small. It is reasonable because larger
smoothing factors give more relaxed surface fits through
the data and provide good interpolative abilities for
prediction, whereas smaller smoothing factors produce
sharp surface fits and reduce the overlap between
categories. Namely, excellent classification perfor-
mances were achieved by adjusting smoothing factors
to best discriminate the compounds.

Classification into Seven Categories. PNNs hav-
ing seven output categories were trained successively,
and their results are summarized in Table 4. The
training (60%), test (20%), and prediction (20%) sets
were randomly selected, and the averages of five runs
are listed in this table. It is striking that only one PNN
could successfully classify 799 compounds into seven
biological categories. Classification performance for the
external prediction set is an excellent metric to validate
the quality of a trained PNN. As can be seen in Table
4, the differences between the classification perfor-
mances for the prediction and test sets were small for
all biological targets. This fact shows the high predictive
power of the trained PNNs. The percentages of com-
pounds correctly classified were larger than 80% except
for histamine H3 antagonists, and about half of them
are around 90%. A possible reason for the relatively
worse performance for histamine H3 antagonists is that
only 38 histamine H3 antagonists were included in the
total of 799 compounds.

The averaged smoothing factor of five runs was 0.273,
and the standard deviation of the five smoothing factors
was 0.048. As mentioned above, the smoothing factor
was large for a category comprising a relatively small

Table 3. Classification Performance of the Trained Neural Network with Two Output Categories

traina testa predicta alla

biological activities C+ b C- b C+ b C- b C+ b C- b C+ b C- b smoothing factorc

histamine H3 antagonist 92.5 98.1 90.5 98.2 90.5 98.2 91.6 98.2 0.461
carbonic anhydrase inhibitor 96.3 99.8 96.4 99.9 94.5 99.3 95.9 99.7 0.450
HIV-1 protease inhibitor 96.9 95.3 91.7 93.1 94.0 92.5 95.3 94.3 0.298
5 HT2A antagonist 94.4 98.8 91.7 97.8 95.0 96.9 94.0 98.2 0.284
tyrosine-specific protein kinase inhibitor 91.5 93.9 84.5 90.2 86.5 93.2 89.1 93.0 0.432
ACE inhibitor 95.0 96.8 93.6 93.8 90.7 95.2 93.9 95.9 0.265
progesterone antagonist 95.7 99.2 90.0 98.4 90.0 98.2 93.2 98.8 0.378

a Train, test, and predict mean the training, test, and prediction sets, respectively. All is the combined set of train, test, and prediction
sets. The percentages of correctly classification compounds are shown. b For H3 antagonists, C+ means the percentage of the compounds
predicted to have H3 antagonist activity. C- is the percentage of the compounds predicted not to have H3 antagonist activity. c The value
of the trained smoothing factors.

Table 4. Classification Performance of the Trained Neural
Networks with Seven Output Categories

biological activities traina testa predicta alla

histamine H3 antagonist 97.8 81.4 76.7 90.3
carbonic anhydrase inhibitor 100.0 98.0 100.0 99.6
HIV-1 protease inhibitor 90.3 84.7 84.7 88.1
5 HT2A antagonist 95.6 90.8 90.0 93.5
tyrosine-specific protein kinase

inhibitor
90.7 80.0 81.0 86.6

ACE inhibitor 97.9 93.6 92.1 95.9
progesterone antagonist 96.5 97.5 90.0 95.3

a Train, test, and predict mean the training, test, and prediction
sets, respectively. All is the combined set of train, test, and
prediction sets. The percentages of correctly classified compounds
are shown.
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number of compounds; the smoothing factors for hist-
amine H3 antagonists, carbonic anhydrase inhibitors,
and progesterone antagonists were 0.461, 0.450, and
0.387, respectively (Table 3). However, for these three
categories, the percentages of compounds correctly
classified were near those for such categories that
comprise more than 100 compounds (Table 4).

Effects of Fixed Smoothing Factors on Clas-
sification Performances. The optimized smoothing
factors varied from 0.265 to 0.461 in Table 3. According
to Specht, the misclassification rate does not change
dramatically with small changes in smoothing factors.7
It is interesting to examine how fixed smoothing factors
affect the classification performances. The numbers of
the compounds, descriptors, and output categories
uniquely define the architecture of a PNN. Therefore,
all that was needed to examine the effects of fixed
smoothing factors was to change the smoothing factors
in the previously modeled PNNs. Tables 5 and 6 list the
classification performances for all 799 compounds using
the values of 0.2, 0.3, and 0.4 as smoothing factors. As
can be seen in these tables, the changes in the smooth-
ing factors only weakly affected the classification per-
formances. Generally, values of 0.2 and 0.3 gave better
results than 0.4, but the differences were small. These
results clearly show that without optimizing smoothing
facts, it is possible to obtain PNNs with sufficient
classification abilities. This fact is particularly valuable
in real-world drug discovery and development where
prompt modeling is often demanded.

In this study, only one smoothing factor was used for
all descriptors. This means that all of the input descrip-
tors have the same impact on predicting the output. Of
course, use of multiple smoothing factors (one smoothing

factor for each input descriptor) is possible. In our
preliminary modeling, we employed multiple descrip-
tors. Unexpectedly, using multiple smoothing factors
gave worse results than employing a single smoothing
factor. A possible reason for this is that the number of
compounds used in the present modeling was relatively
small. Multiple smoothing factors might give better
results where a large number of compounds are avail-
able.

Validations Using External Data. Among 27 116
compounds having biological descriptions in the activity
field and valid chemical structures in the MDDR
database, only 799 compounds were used for modeling
and the remainder of 26 317 compounds was left un-
used. The remainder has biological activities against
various targets except for the seven targets used in
selecting 799 compounds. Further validation of the
modeled PNNs was done with these 26 317 compounds
to examine generalization capabilities. We used the
modeled PNNs having two output categories (Table 3),
and the average values of five runs are summarized in
Table 7. When all compounds are perfectly classified,
the values of C+ and C- are 0% and 100%, respectively.
As can be seen in Table 7, about 67-98% compounds
were correctly classified depending on the targets.
Although the PNNs were built with only 799 com-
pounds, fairly good results were given for the remainder
of 26 317 compounds. It should be noted that the seven
targets cover the major drug targets as GPCRs, kinases,
enzymes, nuclear hormone receptors, and Zn peptidases.
These facts clearly show that the only 799 compounds
well represent the structural properties of the drug
world and the validity of using 799 compounds in the
present modeling.

Classification performances were high for histamine
H3 antagonists, carbonic anhydrase inhibitors, and
progesterone antagonists. The structural variations for
these targets were small, which explains the excellent
results for these targets. On the other hand, the
structural variations in HIV-1 protease inhibitors and
tyrosine-specific protein kinase inhibitors are large. For
example, tyrosine-specific protein kinase inhibitors
comprise various compounds that are ATP-competitive
and not ATP-competitive. Their classification perfor-
mances are still practically good. The biological activity
of 5TH2A antagonist is very specific, while tyrosine-
specific kinase inhibitors have various biological activi-
ties such as antiinflammatory and anticancer activities.
From these results, our modeling procedures proved to
be widely applicable.

Table 5. Effects of Fixed Smoothing Factors on the
Classification Performance of the Trained Neural Networks
with Two Output Categories

smoothing factors

0.2a 0.3a 0.4a

biological activities Cn+ b Cn- b Cn+ b Cn- b Cn+ b Cn- b

histamine H3 antagonist 98.1 98.5 99.4 96.8 99.4 97.3
carbonic anhydrase II

inhibitor
99.6 99.5 100.0 99.0 100.0 98.7

HIV-1 protease inhibitor 96.2 96.0 95.2 94.1 92.7 89.3
5 HT2A antagonist 97.0 97.8 96.5 96.4 96.0 95.5
tyrosine kinase inhibitor 93.6 97.1 92.3 95.6 89.2 92.8
ACE inhibitor 97.3 95.0 97.9 88.7 98.0 83.9
progesterone antagonist 97.4 98.3 97.4 97.3 97.4 97.7

a The smoothing factors used for classifications are shown. b For
H3 antagonists, Cn+ means the percentage of the compounds
predicted to have H3 antagonist activity and Cn- is the ratio of
the compounds predicted not to have H3 antagonist activity.

Table 6. Effects of Fixed Smoothing Factors on the
Classification Performance of the Trained Neural Networks
with Seven Output Categories

smoothing factors

biological activities 0.2a 0.3a 0.4a

histamine H3 antagonist 89.7 91.6 69.7
carbonic anhydrase II inhibitor 98.5 99.6 100.0
HIV-1 protease inhibitor 91.7 85.5 82.5
5 HT2A antagonist 95.5 91.8 89.5
tyrosine kinase inhibitor 89.7 86.6 80.5
ACE inhibitor 95.9 95.9 94.6
progesterone antagonist 95.8 95.3 87.4
a The smoothing factors used for classifications are shown.

Table 7. Validation Test Using External Data (26 317
Compounds)

biological activitiesa
classification

performance (C-)b

histamine H3 antagonist 90.6
carbonic anhydrase inhibitor 98.0
HIV-1 protease inhibitor 73.3
5-HT2A antagonist 78.4
tyrosine-specific protein kinase inhibitor 66.9
ACE inhibitor 78.2
progesterone antagonist 94.0

a The same expressions as those used in the MDDR database
2000.2 (22,11) are shown. b The percentages of correctly classified
compounds are shown. C+ is 100.0 minus C-.
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Discussion

Data Sets. Among 27 116 compounds in the MDDR
database, only 799 compounds were used in modeling
and the remainder of 26 317 compounds was utilized
in validation. We considered that use of the remainder
in modeling was problematic for the following reasons.
First, it is possible to get compounds having a certain
activity, but it is impossible to retrieve those compounds
that do not have a certain activity from the MDDR
database because the MDDR database has activity
information only but is devoid of inactivity information.
It is critical to use well-validated data sets in classifica-
tions studies. Second, it is not rare that one drug has
several biological activities, and so the remainder may
comprise some actives. Third, the seven targets cover
major drug targets such as GPCRs, kinases, enzymes,
nuclear hormone receptors, and Zn peptidases. Fourth,
the number of hidden units is equal to the number of
the compounds in the training set, and inclusion of all
compounds in the modeling results in a huge network.
To get meaningful and practically useful PNN models,
small- or medium-size and high-content data sets are
demanded. Fairly good results obtained for the remain-
der of 26 317 compounds in Table 7 demonstrate the
validity of our selection procedure.

Atom-Type Descriptors. Ghose and Crippen de-
fined atom-type descriptors to calculate the octanol/
water partition coefficient, log P.15 Sadowski and co-
workers used Ghose-Crippen atom-type descriptors to
discriminate drugs from nondrugs by using neural
networks.4 Also, molecular fingerprints such as MDL
substructural keys are widely used in clustering.1
Despite the usefulness of these descriptors and finger-
prints, there exist some redundancies. Recently, a
reduced set of descriptors has been reported by Xue and
co-workers.10 They proposed the minifingerprints (MFPs)
comprising a few selected two-dimensional (2D) descrip-
tors and a number of structural keys. Their MFPs were
picked from a pool of descriptors using a genetic
algorithm and a set of drug compounds with distinct
biological activities. They also claimed that MFPs were
specifically designed to recognize compounds with simi-
lar activity.11 Frimurer and co-workers16 reported a
subset of atom-type descriptors assigned by using
CONCORD,17 software to generate 3D structures from
2D chemical presentations.

The reduced sets proposed by Xue and co-workers and
Frimurer and co-workers were selected by using the
modeling results. There are possibilities that different
data sets lead to different reduced sets of descriptors.
On the other hand, our atom-type descriptors were
defined prior to the network modeling; they were
defined without the information about biological activi-
ties. Hence, the descriptors used here are more univer-
sal and more generalized.

We used not bit strings as MDL fingerprints but the
counts of descriptors. The fingerprints are useful for
treating detailed structural information. However, our
experience is that they are weak for expressing the size
and lipophilicity of molecules, which are very important
factors for biological activities. The strengths of our
descriptors are as follows. (1) They are not so global and
not so detailed. (2) They include information about
pharmacological important functional groups such as

amide and carboxyl groups. (3) They can deal with size
and lipophilicity information to some extent. (4) They
are easy to compute. After defining the appropriate
atom types, we found that the descriptors used in this
study are very similar to those used in the docking
program “GOLD” by Jones and co-workers.18 It is not
surprising that the descriptors expressing receptor-
ligand interactions perform well to represent the physi-
cal and structural properties of drugs.

Another thing to be noted is that bond information
expression such as connectivity and bond order is
lacking in our descriptor set. Bond information is
indispensable to substructural and similarity searching
and is useful when dealing with a single scaffold or very
similar scaffolds. However, there are exists multiple
scaffolds in a category, and with too much precise
information, it is difficult to handle multiple scaffolds.
In the present modeling, only the atom information was
employed, but all compounds in a training set were
included in a PNN. It is probable that the combination
of atom-type descriptors and PNN contributes to the
high performance of our models.

Probabilistic Neural Networks. The advantages
of PNNs are as follows. (1) It is unnecessary to optimize
the architecture of a PNN, since the architecture is
uniquely defined by the numbers of compounds, de-
scriptors, and output categories. (2) A PNN trains much
more quickly than multilayer feed-forward and Baye-
sian neural networks, which is beneficial in drug
discovery and development. (3) For a multilayered feed-
forward neural network, a threshold value must be
given to divide a set of data into two categories, and a
different threshold value leads to different classification
results. The outputs of a PNN are categories, and PNNs
are free from threshold problems. (4) A PNN can deal
with multicategory problems.

There are of course some disadvantages. One dis-
advantage is that PNNs suffer from the curse of
dimensionality. To avoid this problem, it is critically
important to select informative and nonredundant
descriptors to reduce the number of the input descrip-
tors. Namely, the qualities of the descriptors largely
determine the classification power of PNNs. In fact, we
paid extensive effort to consider informative and non-
redundant descriptors. Another disadvantage is that
PNN is a memory-based method. This was a serious
problem in past years, but large memories are inexpen-
sively available today. We have successfully applied
PNN and the atom-type descriptors to the discrimina-
tion between “druglike” and “nondruglike” compounds.
Applications to other problems are now in progress.
While PNN has been rarely used in the field of chemo-
metrics, we believe the combination of PNN and the
atom-type descriptors has potential for modeling com-
plicated problems.
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